
Don't give up Take a break

Abstraction

How can I represent this problem
differently to help understand it?

Draw the problem;
Reduce the data set;
Summarize the problem;
Explain it to the duck;
Explain it to someone else;

Draw
Write
Talk

Check your assumptions:
Have you identified the essential details?
Have you identified all of the essential details?
Have you removed all the unessential details?

Work in small steps;

Save and test regularly;

Change one thing at a time

Catch problems early

T h i n k l i k e a C o m p u t e r S c i e n t i s t
Don't just learn to code: learn to think like a computer scientist

Always have a plan

Have a hypothesis:

What do you think is
causing the problem?

Investigate the hypothesis;

Listen to your instincts;

What was the last thing
that you did before you
noticed the problem?
Undo it;
Does the problem still
occur?

Retrace your steps

Decomposition

How can I usefully break this problem
down into its component parts?

List its parts - no more than one point per
list item;

Group list items into a hierarchy structure -
most important elements at the top, and
related sub-points connected below;

Isolate each group of components from the
others, so that it represents a single step in
the process;

Hierarchy Charts
Jackson Structure Diagram
High-level view of the problem

Pattern Recognition

Learn from your errors and those of others;

Record common errors for future reference;

Pay attention to known pitfalls;

Pay attention to error messages. Learn to
understand them;

Replicate the problem;

Identify the exact scenario that causes the
problem;

Be systematic in your investigation;

Trace the data through your algorithm/program
using a trace table or variable watches,
stepping through your code;

Trace tables

Pencil and paper
Mini whiteboards

Communication

Use the Tools

Algorithmic Thinking

